A slightly more realistic look at lvmcache

Recap ^

And then… ^

I decided to perform some slightly more realistic benchmarks against lvmcache.

The problem with the initial benchmark was that it only covered 4GiB of data with a 4GiB cache device. Naturally once lvmcache was working correctly its performance was awesome – the entire dataset was in the cache. But clearly if you have enough fast block device available to fit all your data then you don’t need to cache it at all and may as well just use the fast device directly.

I decided to perform some fio tests with varying data sizes, some of which were larger than the cache device.

Test methodology ^

Once again I used a Zipf distribution with a factor of 1.2, which should have caused about 90% of the hits to come from just 10% of the data. I kept the cache device at 4GiB but varied the data size. The following data sizes were tested:

  • 1GiB
  • 2GiB
  • 4GiB
  • 8GiB
  • 16GiB
  • 32GiB
  • 48GiB

With the 48GiB test I expected to see lvmcache struggling, as the hot 10% (~4.8GiB) would no longer fit within the 4GiB cache device.

A similar fio job spec to those from the earlier articles was used:


…the only difference being that several different job files were used each with a different size= directive. Note that as there are two jobs, the size= is half the desired total data size: each job lays out a data file of the specified size.

For each data size I took care to fill the cache with data first before doing a test run, as unreproducible performance is still seen against a completely empty cache device. This produced IOPS logs and a completion latency histogram. Test were also run against SSD and HDD to provide baseline figures.

Results ^

IOPS graphs ^

All-in-one ^

Immediately we can see that for data sizes 4GiB and below performance converges quite quickly to near-SSD levels. That is very much what we would expect when the cache device is 4GiB, so big enough to completely cache everything.

Let’s just have a look at the lower-performing configurations.

Low-end performers ^

For 8, 16 and 32GiB data sizes performance clearly gets progressively worse, but it is still much better than baseline HDD. The 10% of hot data still fits within the cache device, so plenty of acceleration is still happening.

For the 48GiB data size it is a little bit of a different story. Performance is still better (on average) than baseline HDD, but there are periodic dips back down to roughly HDD figures. This is because not all of the 10% hot data fits into the cache device any more. Cache misses cause reads from HDD and consequently end up with HDD levels of performance for those reads.

The results no longer look quite so impressive, with even the 8GiB data set achieving only a few thousand IOPS on average. Are things as bad as they seem? Well no, I don’t think they are, and to see why we will have to look at the completion latency histograms.

Completion latency histograms ^

The above graphs are generated by fitting a Bezier curve to a scatter of data points each of which represents a 500ms average of IOPS achieved. The problem there is the word average.

It’s important to understand what effect averaging the figures gives. We’ve already seen that HDDs are really slow. Even if only a few percent of IOs end up missing cache and going to HDD, the massive latency of those requests will pull the average for the whole 500ms window way down.

Presumably we have a cache because we suspect we have hot spots of data, and we’ve been trying to evaluate that by doing most of the reads from only 10% of the data. Do we care what the average performance is then? Well it’s a useful metric but it’s not going to say much about the performance of reads from the hot data.

The histogram of completion latencies can be more useful. This shows how long it took between issuing the IO and completing the read for a certain percentage of issued IOs. Below I have focused on the 50% to 99% latency buckets, with the times for each bucket averaged between the two jobs. In the interests of being able to see anything at all I’ve had to double the height of the graph and still cut off the y axis for the three worst performers.

A couple of observations:

  • Somewhere between 70% and 80% of IOs complete with a latency that’s so close to SSD performance as to be near-indistinguishable, no matter what the data size. So what I think I am proving is that:

    you can cache a 48GiB slow backing device with 4GiB of fast SSD and if you have 10% hot data then you can expect it to be served up at near-SSD latencies 70%–80% of the time. If your hot spots are larger (not so hot) then you won’t achieve that. If your fast device is larger than 1/12th the backing device then you should do better than 70%–80%.

  • If the cache were perfect then we should expect the 90th percentile to be near SSD performance even for the 32GiB data set, as the 10% hot spot of ~3.2GiB fits inside the 4GiB cache. For whatever reason this is not achieved, but for that data size the 90th percentile latency is still about half that of HDD.
  • When the backing device is many times larger (32GiB+) than the cache device, the 99th percentile latencies can be slightly worse than for baseline HDD.

    I hesitate to suggest there is a problem here as there are going to be very few samples in the top 1%, so it could just be showing close to HDD performance.


Assuming you are okay with using a 4.12..x kernel, and assuming you are already comfortable using LVM, then at the moment it looks fairly harmless to deploy lvmcache.

Getting a decent performance boost out of it though will require you to check that your data really does have hot spots and size your cache appropriately.

Measuring your existing workload with something like blktrace is probably advisable, and these days you can feed the output of blktrace back into fio to see what performance might be like in a difference configuration.

Full test output

You probably want to stop reading here unless the complete output of all the fio runs is of interest to you.
Continue reading “A slightly more realistic look at lvmcache” ^